START-UP PROCEDURES

RECOMMENDATIONS

The pool will start to hydrate immediately after mixing, with the majority of hydration taking place within the first 28 days. This critical time period is when a finish is most susceptible to staining, scaling and discoloration.

Proper start-up procedures including timely brushing and constant monitoring and adjusting of the pool water is mandatory.

The following recommended start-up method is based on procedures shown to produce the best aesthetic results.

Due to unique local water conditions and environmental factors, parts of these recommended start-up procedures may need to be modified to protect the pool finish. For example: filling the pool with extremely low calcium hardness, low pH or low total alkalinity levels may necessitate changes to these procedures. Brushing and monitored chemical adjustments will be mandatory by the homeowner or a trained pool technician during the service life of any pool surface.

ALWAYS ADD A CHEMICAL TO WATER, NEVER WATER TO THE CHEMICAL.

THE 1ST DAY

It's vital to follow these steps in order prior to proceeding to the next step

1. Test fill water for pH, alkalinity, calcium hardness and metals. Record test results.
2. High alkalinity should be adjusted to 80 ppm using pre-diluted Muriatic Acid (31-33% Hydrochloric acid). Always pre-dilute the acid by adding it to a five gallon (19 L) bucket of pool water.
3. Low alkalinity should be adjusted to 80 ppm using sodium bicarbonate (baking soda).*
4. pH should be reduced to 7.2 to 7.6 adding pre-diluted Muriatic Acid if the alkalinity is already 80-100 ppm.

5. Brush the entire pool surface thoroughly at least twice daily to remove all plaster dust. Wheeled devices should not be used in the pool until after 28 days.
6. Although optional, it is highly recommended to pre-dilute and add a quality sequestering agent using the recommended initial start-up dosage and then the recommended maintenance dosage per the sequestering agent's manufacturer.²
7. Operate filtration system continuously for a minimum of 72 hours.
8. DO NOT add chlorine for 48 hours. DO NOT turn on pool heater until there is no plaster dust in the pool.

THE 2ND DAY

Brush the Pool

1. Test pH, Alkalinity and Calcium Hardness and repeat steps of 1st day except for Step 6.
2. Once the alkalinity is adjusted to 80 ppm and the pH is adjusted to 7.2 to 7.6, then adjust calcium hardness levels to a minimum of 150 ppm. (CAUTION: Adjustments requiring more than 20 lb. of CaO³ should be pre-diluted and added in 10 lb. increments – morning and afternoon.)

THE 3RD DAY

1. Test pH, Alkalinity and Calcium Hardness and repeat 1st day, Steps 1 through 5.

THE 4TH - 28TH DAY

1. Test pH, Carbonate Alkalinity and Calcium Hardness and repeat 1st day, Steps 1 through 5 every day for 14 days to help prevent the scaling of the pool surface.
2. On the 7th day, if there is any plaster dust remaining – remove it using a brush pool vacuum.
3. After the 4th Day, Calcium levels should be adjusted slowly over the 28 day period not to exceed 200 ppm¹
4. After the 4th Day, Adjust Cyanuric acid levels to 30 to 50 ppm based on the primary sanitizer of the pool (pre-dissolve² and add through the skimmer).

These procedures are sound technical practices in the industry and are advisory and non-binding. The National Plasterers Council does not regulate, control, or monitor the acts of its members or others in terms of conformance to any of the guidelines, recommendations, or other information contained in these technical procedures.
Balanced water chemistry is as critical during the off-season months as it is in season. Water may become aggressive because of rain, snow, and fill water as with the regular use of acid to control pH. Adjust your pH and Carbonate Alkalinity frequently; monitor calcium hardness and Cyanuric acid monthly.

DAILY WATER CHEMISTRY AFTER 28 DAYS

Maintain the water chemistry using the Langelier Saturation Index (LSI) between 0.0 and +0.3

- **Free Chlorine** = 1 to 3 ppm
- **Total Chlorine** = 1 to 3 ppm
- **Sequestering Agent** as per Manufacturer’s directions
- **pH** = 7.2 to 7.6
- **Carbonate Alkalinity** = 80 to 120 ppm
- **Calcium hardness** = 200 to 400 ppm
- **Cyanuric acid** = 30 to 50 ppm (100 ppm is max)
- **TDS** = 300 to 1800 ppm (Non-salt pools)
- **Salt Level** = according to the manufacturer recommendations (Salt chlorination ONLY)

The Langelier Saturation Index (LSI) must be maintained between 0.0 and +0.3 for day-to-day maintenance after the initial start-up procedure has been completed.

This will help to reduce the likelihood of problems with the pool surface. Disregarding these LSI parameters promotes leaching, etching and discoloration on the negative (-) side and scaling and discoloration on the positive (+) side.

\[
pH + Total\text{ Alkalinity Factor} + Calcium\text{ Hardness Factor} + Temperature\text{ Factor} - TDS\text{ Factor} = \text{Langelier Saturation Index (LSI)}\]

Deterioration, discoloration and scaling as a result of the premature or improper use of chemicals and use of chemical feeders are the responsibility of the equipment installer and operator. Feeders other than Oxidation Reduction Potential (ORP) types and pH controllers should not be placed in operation for a minimum of 28 days after the start-up.

Failure to follow the manufacturer’s and/or applicator instructions and to control the LSI may cause deleterious effects, which are not the result of improper workmanship or a manufacturer's defect.

LSI CALCULATOR

<table>
<thead>
<tr>
<th>TA' ppm</th>
<th>CH ppm</th>
<th>Temp F°(C)</th>
<th>Total Dissolved Solids (TDS) ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACTOR</td>
<td>FACTOR</td>
<td>FACTOR</td>
<td>FACTOR</td>
</tr>
<tr>
<td>5 = 0.7</td>
<td>75 = 1.5</td>
<td>32 (0°C) = 0.0</td>
<td>Up to 1000 = 12.10</td>
</tr>
<tr>
<td>25 = 1.4</td>
<td>100 = 1.6</td>
<td>37 (3°C) = 0.1</td>
<td>1000 = 12.19</td>
</tr>
<tr>
<td>50 = 1.7</td>
<td>150 = 1.8</td>
<td>46 (8°C) = 0.2</td>
<td>2000 = 12.29</td>
</tr>
<tr>
<td>75 = 1.9</td>
<td>200 = 1.9</td>
<td>53 (12°C) = 0.3</td>
<td>3000 = 12.35</td>
</tr>
<tr>
<td>100 = 2.0</td>
<td>300 = 2.1</td>
<td>60 (16°C) = 0.4</td>
<td>4000 = 12.41</td>
</tr>
<tr>
<td>125 = 2.1</td>
<td>400 = 2.2</td>
<td>66 (19°C) = 0.5</td>
<td>5000 = 12.44</td>
</tr>
<tr>
<td>150 = 2.2</td>
<td>800 = 2.5</td>
<td>76 (24°C) = 0.6</td>
<td></td>
</tr>
<tr>
<td>200 = 2.3</td>
<td>1000 = 2.6</td>
<td>84 (29°C) = 0.7</td>
<td></td>
</tr>
<tr>
<td>300 = 2.5</td>
<td></td>
<td>94 (34°C) = 0.8</td>
<td></td>
</tr>
<tr>
<td>400 = 2.6</td>
<td></td>
<td>105 (41°C) = 0.9</td>
<td></td>
</tr>
</tbody>
</table>

CALCULATED LSI

For example if Pool Water Chemistry

- **pH** 7.8
- **TA Factor** = 2.1
- **CH Factor** = 2.1
- **Temp Factor** = 0.8
- **TOTAL** = +12.8
- **TDS Factor** = -12.1
- **LSI** = +0.7

Target calculated 0.0 to +0.3

A calculated (+) positive LSI has scaling tendencies. A calculated LSI of 0.0 is considered balanced.

CAUTION: Research has shown that Cyanuric acid levels of 100 ppm (mg/l) and above may cause permanent deterioration to the pool surface. Excessively high calcium hardness and Cyanuric acid levels should be diluted. DILUTION IS THE LOW COST SOLUTION.